

REPORT

issued by an Accredited Testing Laboratory

Contact person RISE Marina C Andersson, jp Safety +46 10 516 52 92 marinac.andersson@ri.se Date 2019-05-27

Reference 9P02995-1 Page 1 (3)

DAW Nordic AB Box 36115 400 13 GÖTEBORG

Classification of reaction to fire in accordance with EN 13501-1

1 Introduction

This classification report defines the classification assigned to paint systems "Capafree" in accordance with the procedure given in EN 13501-1:2018.

2 Details of classified product

2.1 General

The product "Capafree" is defined as paint systems for indoor use.

2.2 Product description

The paint systems, "Capafree", is fully described below.

According to information provided by the client, the products have the following composition:

The paint systems are built up on gypsum plasterboard with Euroclass A2-s1,d0, with a nominal density of 700 kg/m^3 and a nominal thickness of 12,5 mm.

Table 1:

	Primer Nominal amount (g/m²)	Top coat Nominal amount (g/m²)
System 1	Capafree 7 (175 g/m²)	Capafree 7 (175 g/m²)
System 2	Capafree 2 (175 g/m²)	Capafree 7 (175 g/m²)
System 3	Supertäck grund (175 g/m²)	Capafree 7 (175 g/m²)

3 Reports and results in support of this classification

3.1 Test report

Table 2. Test report forming the basis for this classification.

Name of laboratory			Accredited test methods and date
RISE	DAW Nordic AB	9P02995	13823:2010+A1:2014 and EN ISO 11925-2:2010/AC:2011

3.2 Test results

Table 3. Test results showing the worst case as found in the test program performed

Parameter	Number of tests	Results		
		Continuous parameter mean (m)	Compliance with parameters	
	20			
$Fs \le 150 \text{ mm}$		(-)	Compliant	
Ignition of filter paper		(-)	No ignition of filter paper	
	5			
FIGRA _{0,2MJ} (W/s)		89	Compliant	
$FIGRA_{0,4MJ}$ (W/s)		20	Compliant	
LFS < edge		(-)	Compliant	
THR_{600s} , (MJ)		0.9	Compliant	
$SMOGRA$, (m^2/s^2)		0	Compliant	
TSP_{600s} , (m ²)		28	Compliant	
Flaming droplets/particles		(-)	No flaming droplets/particles	
	$Fs \le 150 \text{ mm}$ Ignition of filter paper $FIGRA_{0,2MJ} \text{ (W/s)}$ $FIGRA_{0,4MJ} \text{ (W/s)}$ $LFS < \text{edge}$ $THR_{600s}, \text{ (MJ)}$ $SMOGRA, \text{ (m}^2/\text{s}^2)$ $TSP_{600s}, \text{ (m}^2)$ Flaming	$Fs \leq 150 \text{ mm}$ Ignition of filter paper 5 $FIGRA_{0,2MJ} \text{ (W/s)}$ $FIGRA_{0,4MJ} \text{ (W/s)}$ $LFS < \text{edge}$ $THR_{600s}, \text{ (MJ)}$ $SMOGRA, \text{ (m}^2/\text{s}^2)$ $TSP_{600s}, \text{ (m}^2)$ Flaming	of tests Continuous parameter mean (m) 20 Fs ≤ 150 mm (-) Ignition of filter paper (-) 5 FIGRA _{0,2MJ} (W/s) 89 FIGRA _{0,4MJ} (W/s) 20 LFS < edge (-) THR _{600s} , (MJ) 0.9 SMOGRA, (m²/s²) 0 TSP _{600s} , (m²) 28 Flaming (-)	

^{*:} as required to the end use application of the product

4 Classification and field of application

4.1 Reference of classification

This classification has been carried out in accordance with clause 11 and 15 of EN 13501-1:2018.

^{(-):} not applicable

4.2 Classification

The product called "Capafree" in relation to its reaction to fire behaviour is classified:

В

The additional classification in relation to smoke production is:

١:

The additional classification in relation to flaming particles/droplets is:

d0

The format of the reaction to fire classification for construction products excluding floorings

and linear pipe thermal insulation product is:

Fire Behaviour		Smoke Production			Flaming Droplets	
В	-	s	1	,	d	0

Reaction to fire classification: B-s1,d0

4.3 Field of application:

This classification is valid for the following product parameters:

Composition: combination of primer and topcoat, see table 1 in this report.

Nominal amount of topcoat: see table 1 in this report.

Nominal amount of primer: see table 1 in this report.

This classification is valid for the following end use conditions:

Substrates

• Gypsum plasterboard (paper faced) and any end use substrate of Euroclasses A1 or A2-s1,d0 at least 12 mm thick, having a density $\geq 525 \text{ kg/m}^3$.

The sample was delivered by the client. RISE Safety - Fire Research was not involved in the sampling procedure.

5 Limitations

This classification document does not represent type approval or certification of the product.

RISE Research Institutes of Sweden AB Safety - Fire Research Materials

Performed by Examined by

Marina C Andersson Per Thureson